Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Elife ; 52016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27690308

RESUMO

The histone chaperone Chromatin Assembly Factor 1 (CAF-1) deposits tetrameric (H3/H4)2 histones onto newly-synthesized DNA during DNA replication. To understand the mechanism of the tri-subunit CAF-1 complex in this process, we investigated the protein-protein interactions within the CAF-1-H3/H4 architecture using biophysical and biochemical approaches. Hydrogen/deuterium exchange and chemical cross-linking coupled to mass spectrometry reveal interactions that are essential for CAF-1 function in budding yeast, and importantly indicate that the Cac1 subunit functions as a scaffold within the CAF-1-H3/H4 complex. Cac1 alone not only binds H3/H4 with high affinity, but also promotes histone tetramerization independent of the other subunits. Moreover, we identify a minimal region in the C-terminus of Cac1, including the structured winged helix domain and glutamate/aspartate-rich domain, which is sufficient to induce (H3/H4)2 tetramerization. These findings reveal a key role of Cac1 in histone tetramerization, providing a new model for CAF-1-H3/H4 architecture and function during eukaryotic replication.

3.
Nucleic Acids Res ; 41(20): e194, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24013567

RESUMO

Obtaining quantities of highly pure duplex DNA is a bottleneck in the biophysical analysis of protein-DNA complexes. In traditional DNA purification methods, the individual cognate DNA strands are purified separately before annealing to form DNA duplexes. This approach works well for palindromic sequences, in which top and bottom strands are identical and duplex formation is typically complete. However, in cases where the DNA is non-palindromic, excess of single-stranded DNA must be removed through additional purification steps to prevent it from interfering in further experiments. Here we describe and apply a novel reversed-phase ion-pair liquid chromatography purification method for double-stranded DNA ranging in lengths from 17 to 51 bp. Both palindromic and non-palindromic DNA can be readily purified. This method has the unique ability to separate blunt double-stranded DNA from pre-attenuated (n-1, n-2, etc) synthesis products, and from DNA duplexes with single base pair overhangs. Additionally, palindromic DNA sequences with only minor differences in the central spacer sequence of the DNA can be separated, and the purified DNA is suitable for co-crystallization of protein-DNA complexes. Thus, double-stranded ion-pair liquid chromatography is a useful approach for duplex DNA purification for many applications.


Assuntos
Cromatografia de Fase Reversa/métodos , DNA/isolamento & purificação , DNA/química , Sequências Repetidas Invertidas
4.
Nucleic Acids Res ; 40(22): 11229-39, 2012 12.
Artigo em Inglês | MEDLINE | ID: mdl-23034810

RESUMO

Anti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-terminal tail of Asf1 enhances the interaction of Asf1 with CAF-1. Surprisingly, although H3/H4 also enhances the interaction of Asf1 with the CAF-1 subunit Cac2, H3/H4 forms a tight complex with CAF-1 exclusive of Asf1, with an affinity weaker than Asf1-H3/H4 or H3/H4-DNA interactions. Unlike Asf1, monomeric CAF-1 binds to multiple H3/H4 dimers, which ultimately promotes the formation of (H3/H4)(2) tetramers on DNA. Thus, transition of H3/H4 from the Asf1-associated dimer to the DNA-associated tetramer is promoted by CAF-1-induced H3/H4 oligomerization.


Assuntos
Fator 1 de Modelagem da Cromatina/metabolismo , DNA/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Fator 1 de Modelagem da Cromatina/química , Chaperonas de Histonas/química , Histonas/química , Modelos Biológicos , Ligação Proteica , Multimerização Proteica
5.
Mol Cell Endocrinol ; 348(2): 418-29, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-21803119

RESUMO

Steroid hormone receptors are multi-domain proteins composed of conserved well-structured regions, such as ligand (LBD) and DNA binding domains (DBD), plus other naturally unstructured regions including the amino-terminal domain (NTD) and the hinge region between the LBD and DBD. The hinge is more than just a flexible region between the DBD and LBD and is capable of binding co-regulatory proteins and the minor groove of DNA flanking hormone response elements. Because the hinge can directly participate in DNA binding it has also been termed the carboxyl terminal extension (CTE) of the DNA binding domain. The CTE and NTD are dynamic regions of the receptor that can adopt multiple conformations depending on the environment of interacting proteins and DNA. Both regions have important regulatory roles for multiple receptor functions that are related to the ability of the CTE and NTD to form multiple active conformations. This review focuses on studies of the CTE and NTD of progesterone receptor (PR), as well as related work with other steroid/nuclear receptors.


Assuntos
Receptores de Progesterona/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , DNA/química , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Progesterona/fisiologia , Elementos de Resposta
6.
J Biol Chem ; 284(36): 24415-24, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19553667

RESUMO

Progesterone receptor (PR) belongs to the nuclear receptor family of ligand-dependent transcription factors and mediates the major biological effects of progesterone. Transcriptional co-activators that are recruited by PR through the carboxyl-terminal ligand binding domain have been studied extensively. Much less is known about co-activators that interact with other regions of receptors. Jun dimerization protein 2 (JDP2) is a PR co-activator that enhances the transcriptional activity of the amino-terminal domain by increasing the alpha-helical content and stability of the intrinsically disordered amino-terminal domain. To gain insights into the mechanism of JDP2 co-activation of PR, the structural basis of JDP2-PR interaction was analyzed using NMR. The smallest regions of each protein needed for efficient protein interaction were used for NMR and included the basic region plus leucine zipper (bZIP) domain of JDP2 and the core zinc modules of the PR DNA binding domain plus the intrinsically disordered carboxyl-terminal extension (CTE) of the DNA binding domain. Chemical shift changes in PR upon titration with JDP2 revealed that most of the residues involved in binding of JDP2 reside within the CTE. The importance of the CTE for binding JDP2 was confirmed by peptide competition and mutational analyses. Point mutations within CTE sites identified by NMR and a CTE domain swapping experiment also confirmed the functional importance of JDP2 interaction with the CTE for enhancement of PR transcriptional activity. These studies provide insights into the role and functional importance of the CTE for co-activator interactions.


Assuntos
Receptores de Progesterona/química , Proteínas Repressoras/química , Transativadores/química , Animais , Células COS , Chlorocebus aethiops , Humanos , Zíper de Leucina , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína/fisiologia , Receptores de Progesterona/metabolismo , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Transativadores/metabolismo
7.
Nucleic Acids Res ; 36(11): 3655-66, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18474528

RESUMO

The DNA-binding domain (DBD) of progesterone receptor (PR) is bipartite containing a zinc module core that interacts with progesterone response elements (PRE), and a short flexible carboxyl terminal extension (CTE) that interacts with the minor groove flanking the PRE. The chromosomal high-mobility group B proteins (HMGB), defined as DNA architectural proteins capable of bending DNA, also function as auxiliary factors that increase the DNA-binding affinity of PR and other steroid receptors by mechanisms that are not well defined. Here we show that the CTE of PR contains a specific binding site for HMGB that is required for stimulation of PR-PRE binding, whereas the DNA architectural properties of HMGB are dispensable. Specific PRE DNA inhibited HMGB binding to the CTE, indicating that DNA and HMGB-CTE interactions are mutually exclusive. Exogenous CTE peptide increased PR-binding affinity for PRE as did deletion of the CTE. In a PR-binding site selection assay, A/T sequences flanking the PRE were enriched by HMGB, indicating that PR DNA-binding specificity is also altered by HMGB. We conclude that a transient HMGB-CTE interaction alters a repressive conformation of the flexible CTE enabling it to bind to preferred sequences flanking the PRE.


Assuntos
Proteínas HMGB/metabolismo , Receptores de Progesterona/química , Receptores de Progesterona/metabolismo , Elementos de Resposta , Adenina/análise , Animais , Sequência de Bases , Sítios de Ligação , Células COS , Chlorocebus aethiops , DNA/química , DNA/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Timina/análise
8.
Mol Endocrinol ; 20(12): 3042-52, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16931575

RESUMO

The DNA binding domain (DBD) of nuclear hormone receptors contains a highly conserved globular domain and a less conserved carboxyl-terminal extension (CTE). Despite previous observations that the CTEs of some classes of nuclear receptors are structured and interact with DNA outside of the hexanucleotide hormone response element (HRE), there has been no evidence for such a CTE among the steroid receptors. We have determined the structure of the progesterone receptor (PR)-DBD-CTE DNA complex at a resolution of 2.5 A, which revealed binding of the CTE to the minor groove flanking the HREs. Alanine substitutions of the interacting CTE residues reduced affinity for inverted repeat HREs separated by three nucleotides, and essentially abrogated binding to a single HRE. A highly compressed minor groove of the trinucleotide spacer and a novel dimerization interface were also observed. A PR binding site selection experiment revealed sequence preferences in the trinucleotide spacer and flanking DNA. These results, taken together, support the notion that sequences outside of the HREs influence the DNA binding affinity and specificity of steroid receptors.


Assuntos
DNA/química , Receptores de Progesterona/química , Alanina/química , Alanina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Cristalografia , Dimerização , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptores de Progesterona/genética
9.
J Biol Chem ; 277(28): 25115-24, 2002 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-12006575

RESUMO

Previously, we and others reported that the high mobility group proteins, HMGB-1/-2, enhance DNA binding in vitro and transactivation in situ by the steroid hormone subgroup of nuclear receptors but did not influence these functions of class II receptors. We show here that the DNA binding domain (DBD) is sufficient to account for the selective influence of HMGB-1/-2 on the steroid class of receptors. Furthermore, the use of chimeric DBDs reveals that this selectivity is dependent on the C-terminal extension (CTE), amino acid sequences adjacent to the zinc finger core DBD. HMGB-1/-2 interact directly with the DBDs of steroid but not class II receptors, and this interaction requires the CTE. This in vitro interaction correlates with a requirement of the CTE for maximal HMGB-1/-2 enhancement of DNA binding in vitro and transcriptional activation in cells. Finally, class II receptor DBDs have a much higher intrinsic affinity for DNA than steroid receptor DBDs, and this affinity difference is also dependent on the CTE. These results reveal the importance of the steroid receptor CTE for DNA binding affinity and functional response to HMGB-1/-2.


Assuntos
DNA/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB2/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Dados de Sequência Molecular , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...